Optimizing Methods
 Third List of Problems

1. For PP

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}+4 x_{2}+6 \rightarrow \max
$$

subject to:

$$
x_{1}+3 x_{2} \leqslant 1,5, x_{1}+3 x_{2} \geqslant 9, x_{1} \geqslant 1,5, x_{2} \geqslant 1,5
$$

examine whether it is linear. Draw a feasible region for PP.
2. For LP given in matrix form:

$$
\vec{x} \longrightarrow A \vec{x} \rightarrow \text { max, subject to } G \vec{x} \leqslant \vec{b}
$$

and

$$
\begin{gathered}
A=\left[\begin{array}{llll}
2 & 3 & 4 & 1
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], G=\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 4
\end{array}\right], \\
\vec{b}=\left[\begin{array}{l}
10 \\
15
\end{array}\right], \vec{x} \geqslant \overrightarrow{0}
\end{gathered}
$$

give its analytical form.
3. Give a matrix form of LP given as below

$$
\begin{gathered}
12 x_{1}+9 x_{2}+16 x_{3}+14 x_{4} \rightarrow \text { min }, \\
\text { subject to } \\
4 x_{1}+4 x_{3}+5 x_{4} \geqslant 120 \\
2 x_{1}+6 x_{2}+4 x_{3}+4 x_{4} \geqslant 180 \\
x_{1}, x_{2}, x_{3}, x_{4} \geqslant 0
\end{gathered}
$$

