Optimizing Methods
 Fourth List of Problems

1. For PLP

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=-30 x_{1}+24 x_{2}+20 x_{3}+20 x_{4}+25 x_{5} \rightarrow \max
$$

subject to:

$$
\begin{aligned}
& -3 x_{1}+x_{2}+2 x_{3}+3 x_{4}+5 x_{5} \leqslant 19 \\
& -3 x_{1}+4 x_{2}+3 x_{3}+2 x_{4}+x_{5} \leqslant 57
\end{aligned}
$$

with $x_{j} \geqslant 0$, for $j=1,2, \ldots 5$, show that

$$
\forall_{\left(x_{1}, x_{2}, \ldots, x_{5}\right) \in D} f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \leqslant 351 .
$$

2. Write DLP if PLP has the form

$$
F\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \longrightarrow \max
$$

subject to:

$$
\begin{gathered}
-x_{1}+x_{2} \leqslant 1 \\
x_{1}-2 x_{2} \leqslant 0 \\
x_{1}+x_{2} \leqslant 3,
\end{gathered}
$$

where $x_{1}, x_{2} \geqslant 0$.
3. We know that $(1,2)$ is a solution of the PPL given in the task 2 . Show that $(3 / 2,0,1 / 2)$ is a solution of DPL.

