Optimizing Methods
 Fifth List of Problems

1. For PLP

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=0,1 x_{1}+0,2 x_{2}+0,3 x_{3}+0,3 x_{4}+0,4 x_{5} \rightarrow \min
$$

subject to:

$$
\begin{gathered}
4 x_{1}+x_{2}+8 x_{3}+5 x_{4}+2 x_{5} \geqslant 12000 \\
x_{2}+x_{4}+2 x_{5}+3 x_{6} \geqslant 18000
\end{gathered}
$$

with $x_{j} \geqslant 0$, for $j=1,2, \ldots 6$, show the optimal solution.
2. By using SDR show that $(1,2)$ is a solution of PLP, if

$$
F\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \longrightarrow \max
$$

subject to:

$$
\begin{gathered}
-x_{1}+x_{2} \leqslant 1 \\
x_{1}-2 x_{2} \leqslant 0 \\
x_{1}+x_{2} \leqslant 3,
\end{gathered}
$$

where $x_{1}, x_{2} \geqslant 0$.
3. For one of the problems with the list IOM2 (tasks from 2 to 4) must be given an economic interpretation of dual variables.

