Optimizing Methods Seventh List of Problems

1. On the lecture devoted to the introduction of non-linear programming has been formulated the isoperimetric problem in a simplified version - for rectangles. Prove directly that the solution of this problem is point $\left(\frac{L}{4}, \frac{L}{4}\right)$.
2. Formulate the isoperimetric problem for the family of the triangles.
3. By using the concept of convexity formulated below, prove the Bruno-Minkovskij inequality

$$
|A+B|^{\frac{1}{2}} \geqslant|A|^{\frac{1}{2}}+|B|^{\frac{1}{2}},
$$

where A and B are non-empty subsets of the Euklidean space \mathbf{R}^{n} and $A+B=\{\mathbf{a}+\mathbf{b}: \mathbf{a} \in A, \mathbf{b} \in B\}$ for $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.

By definition, we say that a function $f: D \rightarrow \mathbf{R}$, where $D \subset \mathbf{R}^{n}$, is convex if for every $\mathbf{x}, \mathbf{y} \in D$ and $\lambda \in[0,1]$ the following inequality holds

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})<\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})
$$

