Optimizing Methods Eighth List of Problems

- 1. Show, by using definition of convex function that $f(x) = \ln \frac{1}{x}$, for x > 0 is convex.
- 2. Prove that if f is convex then -f is concave.
- 3. Find intervals on which $f(x) = e^{-x^2}$, for $x \in \mathbf{R}$ is convex.
- 4. Compute all first and second *partial derivatives* for functions

$$f(x, y, z) = xy + ze^x, \ g(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

- 5. For f(x, y, z) = xy + yz + xz and $f(x, y, z) = x^2y^2 + y^2z^2 + x^2z^2$ compute ∇f and Hessian $H(f) = J(\nabla f)$, where J is Jacobian of the vector-valued function.
- 6. Why the matrix H(f) of task 5 is symmetric, i.e. satisfies the condition $H(f) = H^T(f)$?