Optimizing Methods
 Eighth List of Problems

1. Show, by using definition of convex function that $f(x)=\ln \frac{1}{x}$, for $x>0$ is convex.
2. Prove that if f is convex then $-f$ is concave.
3. Find intervals on which $f(x)=e^{-x^{2}}$, for $x \in \mathbf{R}$ is convex.
4. Compute all first and second partial derivatives for functions

$$
f(x, y, z)=x y+z e^{x}, g(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

5. For $f(x, y, z)=x y+y z+x z$ and $f(x, y, z)=x^{2} y^{2}+y^{2} z^{2}+x^{2} z^{2}$ compute ∇f and Hessian $H(f)=J(\nabla f)$, where J is Jacobian of the vector-valued function.
6. Why the matrix $H(f)$ of task 5 is symmetric, i.e. satisfies the condition $H(f)=H^{T}(f)$?
