Fundamentals of Probabilistics Methods Second List of Problems

1. Let $X_{i}, i=1,2, \ldots, 10$ be independent random variable, each uniformly distributed over interval $[0,1]$. By using Central Limit Theorem (CLT), calculate an approximation to

$$
P\left(\left\{\omega \in \Omega: \sum_{i=1}^{10} X_{i}(\omega)>6\right\}\right) .
$$

2. If 10 fair dice are rolled, find by using CLT, the approximation probability that the sum obtained is between 30 and 40, inclusive.
3. Write CLT for independent random variables $X_{1}, X_{2}, \ldots, X_{100}$, where each of them has Poisson distribution with $\lambda=0,01$.
4. For given join distribution of the random vector (X, Y)

$$
\left[\begin{array}{ccc}
0,15 & 0,1 & 0,2 \\
0,1 & 0,1 & 0,1 \\
0,1 & 0,1 & 0,15
\end{array}\right],
$$

find the distribution of X and Y. Does X and Y are independent?
5. The random variables X and Y are independent and they have the following distributions

$$
X: \begin{array}{|c|c|c|}
\hline \hline-1 & 0 & 1 \\
\hline 0,2 & 0,3 & 0,5 \\
\hline \hline
\end{array}: \begin{array}{|c|c|}
\hline \hline 0 & 1 \\
\hline 0,3 & 0,7 \\
\hline \hline
\end{array}
$$

Find the distribution of the random vector (X, Y).
6. Find the number $a, b, c \in \mathbf{R}$, that the matrix

$$
\left[\begin{array}{ccc}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\
a & b & c
\end{array}\right],
$$

represents the join distribution of the random vector (X, Y).
7. Suppose that $X(\Omega)=\{1,2\}, Y(\Omega)=\{-1,1\}$ and random vector (X, Y) has the join distribution as follows

$$
\left[\begin{array}{ll}
\frac{1}{6} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right] .
$$

Find the distribution of $Z=X+Y$.

