Fundamentals of Probabilistics Methods First List of Problems

- 1. Prove that for every two events A, B if $A \subseteq B$ then $P(A) \leq P(B)$.
- 2. By using the formula

$$P(E \cup F) = P(E) + P(F) - P(E \cap F),$$

compute $P(A \cup B \cup C)$, where $A, B, C \in \Sigma$.

- 3. Prove that $\sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = 1$ for every $p \in [0,1]$.
- 4. We say that two events A, B are stochastically independent if $P(A \cap B) = P(A)P(B)$. Prove that then A, B^c , and A^c , B^c are also stochastically independent.
- 5. For random variable \mathbf{X} with *distribution* given by

x_i	-1	0	2	3
p_i	0,1	0,2	$0,\!3$	0,4

find the distribution of the random variable $\mathbf{Y} = 2\mathbf{X} - 1$.

6. X has distribution as in above problem. For given events

$$A = \{ \omega \in \Omega: -0, 5 \leq \mathbf{X}(\omega) < 2, 5 \},$$
$$A = \{ \omega \in \Omega: -1 < \mathbf{X}(\omega) < 2 \},$$
$$A = \{ \omega \in \Omega: 0 \leq \mathbf{X}(\omega) \leq 3 \},$$

compute P(A) by using "step" function and an array method.

- 7. Assume that $\mathbf{X} \in U([1,3])$. Prove that the random variable $0, 5(\mathbf{X}-1)$ is *uniformly* distributed on the *unit interval*.
- 8. We know that the random variable \mathbf{X} has *density probability function* given by

$$f(x) = \begin{cases} 2 - 2x & \text{dla} \quad x \in (0, 1); \\ 0 & \text{dla} \quad x \notin (0, 1). \end{cases}$$

Find the *cummulative distribution function* and than compute

$$P(\{\omega \in \Omega: -0, 5 < \mathbf{X}(\omega) < 0, 75\}).$$

9. Prove that standarizing $\mathbf{X} \in \mathcal{N}(m, \sigma^2)$, we get always standard normal distribution.

10. For $\mathbf{X} \in \mathcal{N}(m, \sigma^2)$ with m = -3, $\sigma = 2$ compute

$$P(\{\omega \in \Omega : |\mathbf{X}(\omega)| < 1\}).$$

- 11. For $\mathbf{X} \in U([a, b])$ compute $E\mathbf{X}$, $var(\mathbf{X})$.
- 12. For $\mathbf{X} \in \mathcal{W}(\lambda)$ compute $E\mathbf{X}$, $var(\mathbf{X})$.
- 13. X has distribution

$$f(x) = \begin{cases} 3x^2 & \text{dla} \quad x \in (0, 1); \\ 0 & \text{dla} \quad x \notin (0, 1). \end{cases}$$

Compute $var(\mathbf{Y})$ if $\mathbf{Y} = \mathbf{X}^2$.