Fundamentals of Probabilistics Methods First List of Problems

1. Prove that for every two events A, B if $A \subseteq B$ then $P(A) \leqslant P(B)$.
2. By using the formula

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

compute $P(A \cup B \cup C)$, where $A, B, C \in \Sigma$.
3. Prove that $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1$ for every $p \in[0,1]$.
4. We say that two events A, B are stochastically independent if $P(A \cap B)=P(A) P(B)$. Prove that then A, B^{c}, and A^{c}, B^{c} are also stochastically independent.
5. For random variable \mathbf{X} with distribution given by

x_{i}	-1	0	2	3
p_{i}	0,1	0,2	0,3	0,4

find the distribution of the random variable $\mathbf{Y}=2 \mathbf{X}-1$.
6. \mathbf{X} has distribution as in above problem. For given events

$$
\begin{gathered}
A=\{\omega \in \Omega:-0,5 \leqslant \mathbf{X}(\omega)<2,5\}, \\
A=\{\omega \in \Omega:-1<\mathbf{X}(\omega)<2\}, \\
A=\{\omega \in \Omega: 0 \leqslant \mathbf{X}(\omega) \leqslant 3\},
\end{gathered}
$$

compute $P(A)$ by using "step" function and an array method.
7. Assume that $\mathbf{X} \in U([1,3])$. Prove that the random variable $0,5(\mathbf{X}-1)$ is uniformly distributed on the unit interval.
8. We know that the random variable \mathbf{X} has density probability function given by

$$
f(x)=\left\{\begin{array}{lll}
2-2 x & \text { dla } & x \in(0,1) \\
0 & \text { dla } & x \notin(0,1)
\end{array}\right.
$$

Find the cummulative distribution function and than compute

$$
P(\{\omega \in \Omega:-0,5<\mathbf{X}(\omega)<0,75\}) .
$$

9. Prove that standarizing $\mathbf{X} \in \mathcal{N}\left(m, \sigma^{2}\right)$, we get always standard normal distribution.
10. For $\mathbf{X} \in \mathcal{N}\left(m, \sigma^{2}\right)$ with $m=-3, \sigma=2$ compute

$$
P(\{\omega \in \Omega:|\mathbf{X}(\omega)|<1\})
$$

11. For $\mathbf{X} \in U([a, b])$ compute $E \mathbf{X}, \operatorname{var}(\mathbf{X})$.
12. For $\mathbf{X} \in \mathcal{W}(\lambda)$ compute $E \mathbf{X}, \operatorname{var}(\mathbf{X})$.
13. \mathbf{X} has distribution

$$
f(x)=\left\{\begin{array}{lll}
3 x^{2} & \text { dla } & x \in(0,1) \\
0 & \text { dla } & x \notin(0,1)
\end{array}\right.
$$

Compute $\operatorname{var}(\mathbf{Y})$ if $\mathbf{Y}=\mathbf{X}^{2}$.

