Statistics for engineers

Second List of Problems

 Introduction to Mathematical Statistics1. Assume that for the characteristic X of some general population we have a simple sample

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(X_{1}, X_{2}, \ldots, X_{n}\right)\left(\omega_{o}\right),
$$

where
$\omega_{o} \in \Omega, X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed as X and independent.
Draw the histogram and empirical cummulative distribution function, if

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(1.07 ; 1.0 ; 0.98 ; 0.99 ; 1.1 ; 1.15 ; 0.99 ; 0.79 ; 0.82 ; 0.91)
$$

2. For a simple sample given in the task 1, compute:
(a) the mean of simple sample

$$
\bar{x}_{n}=\bar{X}\left(\omega_{o}\right)=\frac{1}{n}\left(X_{1}\left(\omega_{o}\right)+X_{2}\left(\omega_{o}\right)+\ldots X_{n}\left(\omega_{o}\right)\right) ;
$$

(b) the variance of simple sample

$$
s_{n}^{2}=S_{n}^{2}\left(\omega_{o}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}
$$

(c) the S-square pick value

$$
\widehat{s}_{n}^{2}=\widehat{S}_{n}^{2}\left(\omega_{o}\right)=\frac{n}{n-1} S_{n}^{2}\left(\omega_{o}\right) .
$$

3. By using the table of probability distributions compute the critical value, if characteristic X of general population has:
(a) chi-square distribution with 10 degree of freedom and $\alpha=0.05$;
(b) t-Student distribution with 15 degree of freedom and $\alpha=0.1$.
