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In the theory of real functions the series play a significant role. On the whole,
this notion refers to: series of numbers, series of functional, trygonometric series.
We assume that we will continue to occupy only the series of number that we
call shortly series. To do this, further we need the concept of the sequence of
numbers.

Definition 1 By a sequence of numbers we understand the real valued function
with a domain as a subset of natural numbers.

For reasons of historical, sequences still will be denote as (an)n∈No , which means
that the function mentioned in the above definition has the following form

No � n −→ an ∈ R, for No ⊂ N.

We assume that we will be further dealt only infinite sequences, so No = N.

Example 1 If for every n ≥ 1, an = 1
nα , for some fixed α ∈ R, we say that the

sequence (an) is α–harmonic.

Example 2 The sequence (an) with an = qn for some q ∈ R is called geometric.

Example 3 The sequence (an) with an = (−1)n is called alternating.

Definition 2 Let’s given be a sequence (an)n∈N. If for every n we take

Sn = a1 + a2 + . . . + an =

n∑
i=1

ai, where S1 = a1,

we get a new sequence (Sn)n∈N, which is called the series. Then, Sn–the nth

expression of those sequence is called the nth partial sum.

Proposition 1 Every sequence is series and vice versa.
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Proof. According to definition 2 enough to show that each sequence is series. For
sequence (bn) we define the sequence (an) as follows

a1 = b1, an = bn − bn−1, n ≥ 2.

We note that for every n ≥ 2

bn = a1 + a2 + . . . + an, and b1 = a1,

which means that bn is the partial sum of the series.

�

Remark 1 By proposition 1 we see that there is no difference beetwen the notion
of sequence and series. Why then do we use the concept of a series? The answer
is trivial–first at all from historical reasons.

Example 4 If for (Sn), where Sn =
∑n

i=1 an and an = 1
nα , we say we have

α–harmonic series. In particular, for α = 1 we get harmonic series.

The example of α–harmonic series shows that in case of series there is problem
of determining the value of the partial sum of series. On the other side, from the
theory of series follows that it is not necessary for the purpose of understanding
the asymptotic behavior of the series known of Sn. For this reason, adopted
another way to writing the series (Sn) as

(Sn) =

∞∑
k=1

ak, where Sn =

n∑
i=1

an.

Example 5 By geometrical series we mean
∑∞

k=1 qk. It is worth noting that in
this situation, it is not difficult to designate the value of the partial sum. Indeed,
we have

Sn = q + q2 + . . . + qn = q
1 − qn

1 − q
, if q �= 1.

For mathematics, the most important thing is to investigate the asymptotic
properties of series.

Definition 3 We say that the series
∑∞

k=1 ak is convergent, if the sequence (Sn)
has his limit S ∈ R. Then S is called the sum, and we write

S =

∞∑
k=1

ak.

So, in the case of convergent series the symbol
∑∞

k=1 ak has a double meaning–is
a series and the sum of this series.
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Remark 2 For given series
∑∞

k=1 ak, we can talk about three cases:

1. series is convergent to his sum S,

2. series has unproper limit, which we write as

∞∑
k=1

ak = +∞ or −∞.

Then we say that series is divergent to infinity.

3. series is not convergent, which means that the sequence (Sn) has not a limit.

Example 6 It is well known that the α–harmonic series are convergent for all
α > 1, but for 0 < α ≤ 1 are divergent.

Problem 1 Show that harmonic series is divergent.

Example 7 The geometric series is convergent for |q| < 1. For q ≥ 1 is diver-
gent and for q ≤ −1 is not convergent. Indeed, from example 5 we know that for
q �= 1, we have

Sn = q + q2 + . . . + qn = q
1 − qn

1 − q
.

So, if |q| < 1, then qn tends to 0, and therefore Sn −→ S = q
1−q

. If q ≥ 1, then
we can write

Sn = q + q2 + . . . + qn ≥ n,

therefore Sn −→ +∞. The case q ≤ −1 is more complicated, and we omit it.

In the theory of series the important role plays so called criteria for conver-
gence of series. Mathematics knows many of such criteria. We pay attention only
to the basics.

Proposition 2 If series
∑∞

k=1 ak is convergent then an −→ 0.

Proof. We note that an = Sn − Sn−1, so if Sn −→ S, then also Sn−1 −→ S, and
consequently an −→ 0.

�

Remark 3 The example of the harmonic series show that the condition an −→ 0
is not sufficient to make a series convergent.

Proposition 3 Suppose that an > 0 for all natural n. If an+1

an
−→ p, and p < 1

then series
∑∞

k=1 ak is convergent, if p > 1 is divergent. In the case p = 1
anything can happen: the series can be divergent but also convergent.
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Example 8 Let’s consider the series
∑∞

n=0
1
n!

. By using the above proposition
we see that

an+1

an
=

1

n + 1
−→ 0,

therefore
∑∞

n=0
1
n!

is convergent. It is well known that in this case

∞∑
n=0

1

n!
= e,

where e is the Euler number.

If the series
∑∞

n=1 an is convergent, than we can write

S = Sn + rn, where rn =

∞∑
k=n+1

ak,

and is called the nth–tail of this series. Hence, we have the following property

Proposition 4 If the series is convergent, than the sequence of his tails (rn) is
convergent to zero.

�

If in addition, an ≥ 0 for every n, then the sequence (Sn), as increasing, has
always a limit, may be in appropriate terms, so we can write

lim
n→+∞

Sn = lim
n→+∞

(Sk +ak+1 +ak+2+ . . .+an) = Sk + lim
n→+∞

(ak+1+ak+2 + . . .+an),

and finally
lim

n→+∞
Sn = Sk + rk, for every k.

Therefore, from proposition 4 we have another useful criterion

Proposition 5 For every series with an ≥ 0 the following conditions are equiv-
alent

• ∑∞
n=1 an is convergent;

• the sequence of tails (rk) is convergent to zero.

�
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Example 9 By alterning series we mean the series given by alterning sequence,
so

∑∞
n=1(−1)n+1 1

n
. We prove that aletrning series is convergent. To do this let’s

fixe n and consider Sn. Then, depending on whether n is even or odd we get

Sn = b1 + b2 + . . . + bn, or Sn = b1 + b2 + . . . + bn +
1

2n + 1
,

where bk = 1
k
− 1

k+1
> 0. But bk = 1

k(k+1)
< 1

k2 , and the 2-harmonic series

is convergent, therefore by proposition 5, the sequence of tails of series (Sn) is
convergent to zero. This means that alternig series is convergent.

Remark 4 The alterning series is an example of the larger classe of series which
are called the Leibnitz series. Moreover, it can prove that in the case of alterning
series we have S = ln 2.

Remark 5 If the series
∑∞

n=1 an is convergent but
∑∞

n=1 |an| is disconvergent,
we say that

∑∞
n=1 an is conditionally convergent. In the theory of condition-

ally convergent series, the well known theorem is famous Riemann’s theorem.
The mentioned theorem says that in the case of conditionally convergent series∑∞

n=1 an, for every real number r we have r =
∑∞

n=1 bn, where the sequence (bn)
is given as a permutation of the sequence (an). In particular, from example 6 and
9 and the Riemann theorem, we can write π =

∑∞
n=1(−1)f(n+1) 1

f(n)
for a bijection

(permutation) f : N → N of the set of all naturals.

Now suppose we have two sequences (an) and (bn) such that lim
n→+∞

an

bn
= 1 and

we known that the series
∑∞

n=1 an is convergent. By assumption |an

bn
− 1| < ε,

whenever n ≥ no for a natural no. But then 1 − ε < an

bn
< 1 + ε for n ≥ no,

which means that for those n′s, anbn > 0. Further, without loss of generality we
can assume that both, an, bn are positive for n ≥ no. To prove that

∑∞
n=1 bn

is convergent it suffices to show that the sequence of partial sum (Sn) is upper
bounded. Indeed, for n ≥ no we have Sn = Sno +(bno+1 + . . .+bn) and the sum in
the parenthesis defined the increasing sequence, which is convergent whenever is
upper bounded. But from the previous inequality 0 < an

1+ε
< bn < an

1−ε
for n ≥ no,

which yields

0 < bno+1 + . . .+ bn <
1

1 − ε
(ano+1 + . . .+an) ≤ 1

1 − ε

( ∞∑
n=1

an − (a1 + . . .+ano)
)
,

which prove that (Sn) is upper bounded. From the above we can obtain (why?)
the following resuls

Proposition 6 For given sequences (an) and (bn), let lim
n→+∞

an

bn
= 1. Then

• ∑∞
n=1 an is convergent iff

∑∞
n=1 bn is convergent;
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• ∑∞
n=1 an is disconvergent iff

∑∞
n=1 bn is disconvergent.

�

Example 10 We analyse the asymptotic behavior of the series
∑∞

n=1 sin π
n
. To

do this, we use proposition 6. For this purpose take the harmonic series, which
as we known is disconvergent. Since

lim
n→+∞

sin π
n

π
n

= 1,

and π
∑∞

n=1
1
n

=
∑∞

n=1
π
n

= ∞, hence
∑∞

n=1 sin π
n

= ∞.

In the theory of real functions the important rule play so called expansion of
the functions given in the form of series. The formulas given below are associated
with a number of mathematicians, including: Newton, Leibnitz, Euler, Gauss,
Taylor, Maclaurin, Lagrange and others.

∞∑
n=0

xn =
1

1 − x
, x ∈ (−1, 1)

∞∑
n=0

(−1)n+1xn =
1

1 + x
, x ∈ (−1, 1)

∞∑
n=0

xn

n!
= ex, x ∈ R

∞∑
n=1

(−1)n−1 xn

n
= ln(1 + x), x ∈ (−1, 1〉

∞∑
n=1

(−1)2n−1 x2n−1

(2n − 1)!
= sin x,

∞∑
n=0

(−1)n x2n

(2n)!
= cos x, x ∈ R

∞∑
n=0

(−1)n x2n+1

2n + 1
= arctan x, x ∈ 〈−1, 1〉.

For example, substituting in the formula fourth x = 1 we obtain mentioned
in remark 4 equation

∑∞
n=1(−1)n−1 1

n
= ln(2). Similarly, if in the last formula we

assume that x = 1, we get the famous Leibnitz series π
4

=
∑∞

n=0(−1)n 1
2n+1

, the
first which gave expand the number of π. Of course, from the formula of three
we have well known expansion of the Euler’s number e =

∑∞
n=0

1
n!

.
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